10 1 Fundamental Coefficients

>1.11Let N = {1,2,...,100}, and A < N with |A|] = 55. Show that A
contains two numbers with difference 9. Is this also true for |A| = 54?

1.2 Subsets and Binomial Coefficients

Let N be an n-set. We have already introduced the binomial coeffi-
cient (’,:) as the number of k-subsets of N. To derive a formula for
<’,§) we look first at words of length k with symbols from N.

Definition. A k-permutation of N is a k-word over N all of whose
entries are distinct.

For example, 1235 and 5614 are 4-permutations of {1, 2,...,6}. The
number of k-permutations is quickly computed. We have n possi-
bilities for the first letter. Once we have chosen the first entry, there
are n—1 possible choices for the second entry, and so on. The prod-
uct rule thus gives the following result:

The number of k-permutations of an n-set equalsn(n —1) - - - (n —
k+1) (n,k =0).

For k = n we obtain, in particular, n! = n(n — 1) ---2 - 1 for the
number of n-permutations, i.e., of ordinary permutations of N. As
usual, we set 0! = 1.

The expressions n(n — 1) ---(n — k + 1) appear so frequently in
enumeration problems that we give them a special name:

nk:=nm-1)--- (n—k+1) are the falling factorials of length
k,withn® =1 (n € Z, k € Np).

Similarly,

nk = n(n+1)--- (n+k-1) are the rising factorials of length
k,withn® =1 (n € Z, k € Ny).

Now, every k-permutation consists of a unique k-subset of N.
Since every k-subset can be permuted in k! ways to produce a k-
permutation, counting in two ways gives k!(ﬁ) = nk, hence

(n,k=0), (1)

ny nk nn-1)---(n-k+1)
k] ki k!
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where, of course, (ﬁ) =0 for n < k.
Another way to write (1) is

n n!
(k>=k!(n_k)! n=k=0), )

from which <7,Z) = (n’fk> results.

Identities and formulas involving binomial coefficients fill whole
books; Chapter 5 of Graham-Knuth-Patashnik gives a comprehen-
sive survey. Let us just collect the most important facts.

Pascal Recurrence.

(W)= G2) (1) () wson o

We have already proved this recurrence in Section 1.1; it also follows
immediately from (1).

Now we make an important observation, the so-called polynomial

method. The polynomials

xk=x(x-1)(x-2)- - (x—k+1),xE =x(x+1)(x+2)---(x+k-1)

over C (or any field of characteristic 0) are again called the falling

resp. rising factorials, where x% = x9 = 1. Consider the polynomials
xk (x — k=L (x - 1)k

TR ST

Both have degree k, and we know that two polynomials of degree k
that agree in more than k values are identical. But in our case they
even agree for infinitely many values, namely for all non-negative
integers, and so we obtain the polynomial identity

Xt (x-DEL (e -DE
k! (k-1)! k!

(k=1). 4)

k —1)---(Cc— .
Thus, if we set (i) =& = % for arbitrary ¢ € C (k >

0), then Pascal’s recurrence holds for (i) In fact, it is convenient to
extend the definition to negative integers k, setting
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@_{C—’j (k = 0)
k 0 (k<0).

Pascal’s recurrence holds then in general, since for k < 0 both sides

are O:
c c—1 c—1
(k)z(k—1>+( K ) (ceCke?Z). (5)

“1) _ (=D(=2)---(=n) _ (_1yn
(=)™,

As an example, < n i

Here is another useful polynomial identity. From
(=) = (=x)(=x=1) - - - (=x—k+1) = (-DFx(x+1) - - - (x+k—1)

we get B B
(—0)k = (=Dkxk,  (—x)* = (~1)kxk, (6)

With xk = (x + k — 1)k this gives

—c\ _, kfctk-1 Ckf€) _ (k-c-1
() o) () e

Equation (6) is called the reciprocity law between the falling and
rising factorials.

The recurrence (3) gives the Pascal matrix P = ((Z)) with n as row

index and k as column index. P is a lower triangular matrix with 1’s
on the main diagonal. The table shows the first rows and columns,
where the 0’s are omitted.

Lk[01 2 3 4 5 6 7
0 |1

111

2 12 1

3 /1.3 3 1

4 |1
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There are many beautiful and sometimes mysterious relations in
the Pascal matrix to be discovered. Let us note a few formulas that
we will need time and again. First, it is clear that >}_, (2) = 2n
since we are counting all subsets of an n-set. Consider the column-
sum of index k down to row n, i.e., >, <,i> By classifying the
(k + 1)-subsets of {1,2,...,n + 1} according to the last element

i+1 (0 <i=<mn)weobtain

n .
i n+1
> = : (8)
. k k+1
i=0
Let us next look at the down diagonal from left to right, starting
with row m and column 0. That is, we want to sum >.[* (mf l). In

the table above, the diagonal with m = 3, n = 3 is marked, summing
to 35 = (;) Writing Y1 (mi“) =>" (mn:l) = > (Tlﬁl) this is
just a sum like that in (8), and we obtain

S

i=0
Note that (9) holds in general for m € C.

From the reciprocity law (7) we may deduce another remarkable
formula. Consider the alternating partial sums inrow 7: 1,1 - 7 =
-6,1-7+21=15,-20,15,-6,1,0. We note that these are precisely
the binomial coefficients immediately above, with alternating sign.
Let us prove this in general; (7) and (9) imply

562 () () e ()

(10)
The reader may wonder whether there is also a simple formula for
the partial sums > %, (2) without signs. We will address this ques-
tion of when a “closed” formula exists in Chapter 4 (and the answer
for this particular case will be no).

Next, we note an extremely useful identity that follows immediately
from (2); you are asked in the exercises to provide a combinatorial

argument:
n\/m n\(n-k
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Binomial Theorem.
" (n
(x+y)"=> <k>xky"k. (12)
k=0

Expand the left-hand side, and classify according to the number
of x’s taken from the factors. The formula is an immediate conse-
quence.

For y = 1 respectively v = —1 we obtain

x+Dn =Y (”)xk, (x —1)" = Z(—l)”‘k<n)xk, (13)
k = k

k=0

and hence for x = 1, X}'_, <’,§) =2" and

S (—1>’<<’,’:> = S0, (14)
k=0

where §; ; is the Kronecker symbol

1 i=j,
6"1_{0 i+ j.

This last formula will be the basis for the inclusion-exclusion prin-
ciple in Chapter 5. We may prove (14) also by the bijection principle.
Let N be an n-set, and set Sgo = {A = N : |A| even}, S = {A c N :
|A| odd}. Formula (14) is then equivalent to |Sg| = |S1] for n > 1.
To see this, pick a € N and define ¢ : So — S1 by

Aua ifa¢aA,
P(A) = _
ANa ifa e A.

This is a desired bijection.

Vandermonde Identity.

x+y)  w (x y
()= 20007 e 0
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Once again the polynomial method applies. Let R and S be disjoint
sets with |R| = » and |S| = s. The number of n-subsets of RuU S
is (TZS ) On the other hand, any such set arises by combining a k-

subset of R with an (n — k)-subset of S. Classifying the n-subsets A
according to |A N R| = k yields

Y +s 2o(r s
( )zZ()( )forallr,seNo.
n — k)\n—-k

The polynomial method completes the proof.

2
Example. We have X7 (1) = i (1) (") = (3).
Multiplying both sides of (15) by n! we arrive at a “binomial” theo-
rem for the falling factorials:

x+y)m=3 (Z)xky"k (16)

k=0

and the reciprocity law (6) gives the analogous statement for the
rising factorials:

(x+y)"=> <n>xky”‘k- (17)
k=0 k

Multisets.

In a set all elements are distinct, in a multiset we drop this require-
ment. For example, M = {1,1,2,2,3} is a multiset over {1,2,3} of
size 5, where 1 and 2 appear with multiplicity 2. Thus the size of
a multiset is the number of elements counted with their multiplici-
ties. The following formula shows the importance of rising factori-
als:

The number of k-multisets of an n-set is

3 - -
n* nm+1)---(m+k 1>:<n+k 1)_ (18)

k! k! k

Just as a k-subset A of {1,2,...,n} can be interpreted as a mono-
tone k-word A = {1 <a; <a» <--- <ap <n}, akmultiset is a
monotone k-word with repetitions {1 < a1 < --- < ay < n}. This
interpretation immediately leads to a proof of (18) by the bijection
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rule. Themapp:A={ar<ap <---<ax} — A ={l<a <
ar+l<az+2<---<ar+k-1=<n+k-1}is clearly a bijection,
and (18) follows.

Multinomial Theorem.

Gt xm) = (k nk >xlfl---x1'§1m, (19)
(kl km) 1---Km
where
n n! m
Ki...km) kil - km!’ i;kizn, (20)

is the multinomial coefficient.

The proof is similar to that of the binomial theorem. Expanding
the left-hand side we pick x; out of k; factors; this can be done
in <,?1 > = ,(1,(+l,<1), ways. Out of the remaining n — k; factors we
choose x» from k> factors in <",22kl) = ,Q,(gf%k"llj'w ways, and so on.
A useful interpretation of the multinomial coefficients is the fol-
lowing. The ordinary binomial coefficient (2) counts the number of
n-words over {x, v} with exactly k x’s and n — k »’s. Similarly, the
multinomial coefficient <k1..T.Lkm> is the number of n-words over an

alphabet {x1,...,xm} in which x; appears exactly k; times.

Lattice Paths.

Finally, we discuss an important and pleasing way to look at bino-
mial coefficients. Consider the (m x n)-lattice of integral points in
72, e.g.,,m = 6, n = 5 as in the figure,

(0,0)

I
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and look at all lattice paths starting at (0, 0), terminating at (m, n),
with steps one to the right or one upward. We will call the hori-
zontal steps (1,0)-steps since the x-coordinate is increased by 1,
and similarly, we call the vertical steps (0, 1)-steps. Let L(m,n)
be the number of these lattice paths. The initial conditions are
L(m,0) = L(0,n) = 1, and classification according to the first step
immediately gives

Limn)=L(m-1,n)+L(m,n-1).

m+n

This is precisely Pascal’s recurrence for < m

that

>, and we conclude

Lim,n) = ( (21)

m+ n)

Another quick way to see this is by encoding the paths. We assign
the symbol E(ast) to a (1,0)-step and N (orth) to a (0, 1)-step. The
lattice paths correspond then bijectively to (m + n)-words over
{E,N} with precisely m E’s, and this is <m72"). In the example
above, the encoding is given by ENEENNENEEN. The lattice path in-
terpretation allows easy and elegant proofs of many identities in-

volving binomial coefficients.

Example. Consider the following variant of the Vandermonde
identity: >}, (Szk> ("n_lk> = (;:1’:1111) (s,m,n € Ng). For n < m,
both sides are 0, so assume n > m, and look at the (s + m +1) X
(n — m)-lattice. The number of paths is ( ;:;:;11) Now we classify

the paths according to the highest coordinate y = k where they
touch the vertical line x = s.

(s+m+1,n—m)

< (s+m+1,0)

Then the next step is a (1,0)-step, and the sum and product rules
give
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Exercises
1.12 Prove (7’;) (T) = (’Z) (;’fi) (n = m > k > 0) by counting pairs of
sets (A, B) in two ways, and deduce > ;% (’,;‘) (;;‘_’i) =2m (::L)

> 1.13 Use the previous exercise to show that (%Z) (22:?‘> (zkk) = (i’f) (2)2
forn>k=0.

1.14 Show that (2) = %(2:11), (’,:) = k4l (k:‘1>, and use this to verify the
unimodal property for the sequence (2‘), O<k=<n: (6‘) < (’f) <iee <

(imr2s) = () > > (3) -

1.15 Show that that the sum of right-left diagonals in the Pascal matrix
ending at (n,0) is the Fibonacci number F, 1, i.e., Fyt1 = 2k=0 (";k> .

1.16 Show that rk(r — 1)k = B0Z (¢ €,k € Np), and deduce (7/7) =
oA, (FF) = Comen+s D (3.
n

> 1.17 Show that the multinomial coefficient (m...nk> assumes for fixed n
and k its maximum in the “middle,” where |n; — n;| < 1 for all i, j. Prove

in particular that (mr?zm) < f—fl (n=1).

1.18 Prove the identities (8) and (9) by counting lattice paths.

> 1.19 The Pascal matrix (slightly shifted) gives a curious prime number
test. Index rows and columns as usual by 0, 1, 2, .... In row n we insert the
n + 1 binomial coefficients (g), (’f), ey (Z), but shifted to the columns
2n,...,3n. In addition, we draw a circle around each of these numbers

that is a multiple of n, as in the table.
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kio1 2 3 456 7 8 9 10 11 12
1

OO
1 @1
1B 1
1@ 6 @ 1

Show that k is a prime number if and only if all elements in column k are
circled. Hint: k even is easy, and for odd k the element in position (n, k)

. n
is (7%, -

1.20 Let a,, = G}q)+%+---+é.5howthatan = ’%lan_1+land

B w NN = O

compute lim,, . a, (if the limit exists). Hint: a,, > 2 + % and an.1 < an
forn>4.

> 1.21 Consider (m + n)-words with exactly m 1’s and n 0’s. Count the
number of these words with exactly k runs, where a run is a maximal
subsequence of consecutive 1’s. Example: 1011100110 has 3 runs.

1.22 Prove the following variants of Vandermonde’s identity algebraically
(manipulating binomial coefficients) and by counting lattice paths.

2 () () = () B T (k) = (i),

1.23 Give a combinatorial argument for the identity

Sk (21'37_’1> (’;:i) — D2r=2s+1 (257_—1s> r.seNg.

> 1.24 Consider the (m x n)-lattice in Z2. A Delannoy path from (0,0) to
(m,n) uses steps (1,0), (0,1) and diagonal steps (1,1) from (x,y) to
(x + 1,y + 1). The number of these paths is the Delannoy number D, .
Example for Dy ; = 5:

1S ST T

Prove that Dy = 2k (T) ("nflk>. Hint: Classify the paths according to the
number of diagonal steps.

1.25 Prove the identity > (m’kr”) (””’S)(”k) = (r)(Z), m,n € Ny.

n-k m+n m

Hint: Write (;;’;) =3, (mfmi) (’f), and apply (11).

1.26 Prove that % < (2”) < ‘% for n > 1. Hint: For the upper bound

n
prove the stronger result (%f) <22/ (1+1)/m.



